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ABSTRACT

A convergent synthesis of (þ)-SCH 351448 (1), a monosodium salt of a C2-symmetric macrodiolide, is described. Our approach is based on a
[4þ 2] annulation with a chiral allyl silane (anti-5c) to assemble the pyran subunits. Homodimerization was carried out in a stepwise fashion; initial
esterification at C290 followed by macrocyclization at C29 afforded the desired macrodiolide.

In 2000, Hedge and co-workers reported the bioassay-
guided isolation of a microbial metabolite, named SCH
351448 (1), from the organic extract of Micromonospora
sp.1 SCH351448 is a novel activator (ED50=25 μM) for a
low-density lipoprotein receptor promoter, which is im-
portant for the treatment of hypercholesterolemia.2

The structure of SCH 351448 (1) was determined by
single-crystal X-ray analysis and exhibited a hepta-coordi-
nated sodium ion positioned in the interior cavity of the
hydrophobic skeletal array.1 Its structure consisted of a
28-membered macrodiolide comprised of two identical
hydroxy carboxylic acid monomeric subunits. The intri-
guing structure and unique bioactivity of 1 have led to

several total synthesis programs being initiated by the
synthetic community.3

Our retrosynthetic analysis of this target (Figure 1)
began with a disconnection of the C29/C290 ester bonds
to yield the monomeric subunit 2. The latter was envi-
sioned to come from an olefin cross metathesis of frag-
ments 3 and 4. Fragment 3 could arise from an asymmetric
allylation and crotylationof the cis-2,6-dihydropyran core,
whichwould be formed froma [4þ 2] annulation reaction4

of allylsilane anti-5cwith aldehyde 6a. Similarly, fragment
4 would be derived from silane anti-5c and aldehyde 6b.
We have previously reported a highly diastereo- and

enantioselective [4þ 2] annulation between aldehydes and
syn allylsilanes.4 However, early experiments at applying
the annulation to form dihydropyran products 7 from
silanes syn-5b/syn-5c and aldehyde 6a (Scheme 1, eq 1)
gave inconsistent results and thus were not synthetically
useful. Previously, Roush had reported the construction of
cis-2,6-disubstituted dihydropyrans using anti-allylsilanes
derived from the asymmetric γ-silyl allylboration of an
aldehyde.5 In that report, the favored pathway was
thought to proceed via a boat-like TS-A which fashioned
the cis-isomer as the major product, while the trans-isomer
was suggested to form via the unfavored chairlike TS-B
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(Scheme 1). In that context, we have observed that anti-
silanes such as 5 participate in a [4 þ 2]-annulation with

aldehydes to produce 2,6-cis dihydropyrans 7; the results
are summarized in Table 1. One proposedmechanism that
accounts for the stereochemical course of the annulation
involves the equilibration between a twist boat-like TS-C
and a chairlike TS-D, where TS-C avoids the steric desta-
bilizing trans-diaxial orientation versus TS-D (Scheme 1,
eqs 4 and 5).

Synthesis of the C1�C13 fragment began with the
knownR,R0-dimethyl aldehyde6a6 (Scheme2).Annulation
of silane anti-5cand aldehyde 6aproceeded smoothly in the
presence of TMSOTf to afford the desired dihydropyran 8

in 83% yield (dr 13:1). Hydrogenation of 8 afforded a
primary alcohol which was later oxidized to aldehyde 9 in
80%yield over two steps. Further oxidation under Pinnick
oxidation conditions7 and protection afforded benzyl ester
10. An SN2 displacement of themesitylate in compound 10
with NaCN followed by Raney-nickel mediated partial
reduction8 of the resulting nitrile afforded aldehyde 11

in 60% yield, after hydrolysis of the intermediate imine.

Table 1. Synthesis of cis-Dihydropyrans via [4 þ 2] Annulation

entry aldehyde anti-silane

major

isomera
yield

(%)b
dr

(cis/trans)c

1 R = PhCH2 5a 7a 30 10:1

2 R = PhCH2 5b 7b 46 13:1

3 R = PhCH2 5c 7c 83 17:1

4 R = n-C4H9 5a 7d 25 10:1

5 R = n-C4H9 5b 7e 58 12:1

6 R = n-C4H9 5c 7f 81 18:1

a Stereochemistry of the dihydropyrans was assigned by NOE ex-
periments. bYields were based on pure materials isolated by chromato-
graphy on SiO2.

cThe product ratios were determined by 1H NMR
(400 MHz).

Figure 1. Retrosynthetic analysis of SCH 351448 (1).

Scheme 1. Possible Transition States for the [4 þ 2] Annulation

Scheme 2. Synthesis of C1�C13 Fragment
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Asymmetric allylation of 11 using Brown’s protocol9-
furnished thedesired secondaryhomoallylic alcohol,which
was subsequently protected as benzyl ether 12. Oxidative
cleavage of alkene 12 followed by asymmetric crotylation
of the resulting aldehyde usingBrown’s (E)-crotyl borane10

afforded the anti-homoallylic alcohol, whichwas protected
as its TBS ether to provide olefin 3 as one of the coupling
partners in 60% yield over three steps.
Synthesis of the C14�C29 fragment (Scheme 3) began

with aryl triflate 13,11whichwas subjected to a Sonogashira
cross-coupling to afford propargylic alcohol 14 in 85%
yield. Catalytic hydrogenation of alkyne 14 in the presence
of Pd/C followed by PCC oxidation provided aldehyde 6b.

Annulation between aldehyde 6b and silane anti-5c furn-
ished the desireddihydropyran,whichwashydrogenated to
give 15 in 70% yield over two steps. Subsequent SN2
displacement of the mesitylate in 15 yielded an iodide,
which was further converted to acetate 16 in 60% yield
over two steps.ASc(OTf)3 catalyzedhydrolysis

12 of acetate
16 provided primary alcohol 17 in 91% yield, which was
then subjected to a Swern oxidation, followed by a Ju-
lia�Koci�enski olefination3e with sulfone 18,13 to give al-
kene 19 in 80% yield. Opening of the dioxinone ring in 19

afforded the intermediate phenol, which was converted to
the β-silyl ester 4.

With advanced intermediates 3 and 4 available in
useful amounts, we were now positioned to investigate
methods for their union. Cross metathesis between 3 and 4
(Scheme 4) proceeded smoothly using the Grubbs�
Hoveyda second generation catalyst,14 which delivered
the (E)-olefin. This material was then subjected to diimide
reduction3a to afford advanced intermediate 20. Deprotec-
tion of 20 provided seco acid 2, which was poised for the
homodimerization experiments.

A synthetic strategy to construct the C2-symmetrical
macrodiolide core of cycloviracin B1 has been described by
F€urstner.15 It involved a template-directed macrodilacto-
nization reaction promoted by 2-chloro-1,3-dimethylimi-
dazolinium chloride (DMC).16 Inspired by this work, we
investigated a similar strategy for macrodiolide formation.
Unfortunately, treatment of seco acid 2 with DMC/
DMAP and suitable additives17 only led to the undesired
14-membered lactone 2318 without formation of dimeric
product 22. After these disappointments, we evaluated a

Scheme 3. Synthesis of C14�C29 Fragment

Scheme 4. Attempted Template-Directed Macrodimerization
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stepwise pathway to complete the synthesis, as illustrated
in Scheme 5.

The reaction sequence that ultimately proved successful
utilized Lee’s method of esterification,3a which was facili-
tated by dioxinone ring opening. Cross metathesis be-
tween 19 and 3 afforded the intermediate alkene, which
was reduced with diimide to deliver dioxinone 24. TBS
deprotection of 20 gave alcohol 21 in 91% yield
(Scheme 4). Deprotonation of alcohol 21 with NaHMDS

and addition of dioxinone 24 led to the desired monoester
product, which was protected to afford 25 in 60% yield
over two steps. Deprotection of the monoester provided
the seco acid, which was subjected to a DMC/DMAP-
promoted esterification16 reaction to achieve macrocycle
formation; 22 was obtained in 50% yield over two steps.
Lastly, deprotection followed by workup with 4 M HCl
saturated with NaCl3a delivered SCH 351448 (1) as its
monosodium salt in 70% yield. The spectral data for our
synthetic material matched those reported for the natural
product.3

In summary, we have described a convergent, enantio-
selective total synthesis of (þ)-SCH 351448 that proceeds
in 2.3%overall yield from readily available allylsilane anti-
5c. Synthetic highlights of our route include a [4 þ 2]
annulation strategy using silane anti-5c to ultimately con-
struct the tetrahydropyran ring systems in fragments 3 and
4. Olefin cross metathesis was utilized in the union of two
advanced fragments to generate the monomeric subunit.
A metal-template directed macrodilactonization strategy
proved unsuccessful. Thus, the macrodiolide was as-
sembled through a two-step sequence involving dioxinone
ring opening with concomitant esterification followed by
DMC/DMAP-mediated macrocyclization.

Acknowledgment. Financial supportwasobtained from
NIH CA 53604. We are grateful to Prof. John Snyder,
Dr. Paul Ralifo, and Dr. Norman Lee (Chemical Instru-
mentation Center at BostonUniversity) for helpful discus-
sions and assistance with NMR and HRMS experiments.

Supporting Information Available. Experimental de-
tails and selected spectral data for all new compounds.
This material is available free of charge via the Internet at
http://pubs.acs.org.

Scheme 5. Assemly of 1 by Dioxinone Ring-Opening and
Macrocyclization


